Home | About | Quick Start | FAQ
Beta Version 0.1
DHARA is an online index of articles on Ayurveda published in research journals worldwide. Users Online: 293
  Enter Keyword Below :
      
Advanced

Journal of Biosciences 2010 Sep ; (3) :0
Overexpression of OsWRKY72 gene interferes in the abscisic acid signal and auxin transport pathway of Arabidopsis.

Abstract
Through activating specific transcriptional programmes, plants can launch resistance mechanisms to stressful environments and acquire a new equilibrium between development and defence. To screen the rice WRKY transcription factor which functions in abiotic stress tolerance and modulates the abscisic acid (ABA) response, we generated a whole array of 35S-OsWRKY transgenic Arabidopsis. In this study, we report that 35S-OsWRKY72 transgenic Arabidopsis, whose seed germination was retarded under normal conditions, emerged more sensitive to mannitol, NaCl, ABA stresses and sugar starvation than vector plants. Meanwhile, 35S-OsWRKY72 transgenic Arabidopsis displayed early flowering, reduced apical dominance, lost high temperature-induced hypocotyl elongation response, and enhanced gravitropism response, which were similar to the auxin-related gene mutants aux1, axr1 and bud1. Further, semi-quantitative RT-PCR showed that the expression patterns of three auxin-related genes AUX1, AXR1 and BUD1 were significantly altered in rosette leaves and infl orescences of 35S-OsWRKY72 plants compared with control Arabidopsis, and two ABA-related genes ABA2 and ABI4 were induced in 35S-OsWRKY72 seedlings. In addition, northern blot analysis indicated that, in rice, OsWRKY72 was inducible by polyethylene glycol (PEG), NaCl, naphthalene acetic acid (NAA), ABA and 42 degrees C, similar to its orthologue AtWRKY75 in Arabidopsis, implying that these two WRKY genes might be required for multiple physiological processes in their plants. Together, these results suggest that OsWRKY72 interferes in the signal cross-talk between the ABA signal and auxin transport pathway in transgenic Arabidopsis.

DHARA ID: D016455 Pubmed ID: 20826955


Access to Full Paper Not Available

Copyright | Disclaimer | Feedback | Updates | Contact
Developed and maintained by AVP Research Foundation (Formerly AVT Institute for Advanced Research), 136/137, Trichy Road, Ramanathapuram, Coimbatore - 641045, Tamil Nadu, India
Funded by Central Council for Research in Ayurvedic Sciences, Dept. of AYUSH, Ministry of Health and Family Welfare, Government of India, New Delhi